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Abstract. The thermal expansion coefficients of the diamond-like materials C (dia
mond), Si, Ge, a-Sn, InSb, GaAs, ZnSe and CdTe for which data are available, are 
unusual in the following respects: (i) the magnitude of a at high temperatures is 
low, (ii) the 'Slater gamma' Ys = - t d(ln BT)jd(ln V) - t is very much larger than 
Gruneisen's Y, YOr = aBTVjCv in contrast with the behaviour of most materials, 
(iii) very large deviations from the Mie- Gruneisen eqoation of state appear in all the 
materials listed. The thermal expansion coefficient has a negative value over a range 
of low temperatures in each case. This behaviour is discussed in terms of the Slater 
model, a more general elastic continuum model, and a model in which details of the 
lattice vibrational spectrum are considered. 

The large discrepancy between the 'anharmonicity' parameter found from thermal 
conductivity and that found from thermal expansion is considered. 

1. Introduction 

The volume coefficients of thermal expansion in Si, Ge, C (diamond), a-Sn, InSb, ZnSe, 
GaAs and CdTe (Gibbons 1958, Novikova 1959, 1960, 1961) exhibit qualitatively similar 
behaviour. The magnitudes of a are lower in these semiconductors than those of many 
materials, lying between 12 and 22 in the high temperature limit, to be compared with 
representative values lying between 92 and Il9 ( x 10- 6 degc- I ) in the face-centred cubic 
alkali halides. The temperature dependence of a in each shows a characteristic dip to 
negative values at low temperatures, i.e. large deviations from the Mie- Gruneisen equation 
of state. Data are available for many of the properties of germanium and silicon and in 
particular the pressure dependence of the elastic constants has been measured. We there
fore restrict the quantitative aspects of our discussion to these two substances. We shall 
discuss the thermal expansion in Ge and Si for a general continuum model and a model 
in which structure in the actual lattice vibrational spectrum is taken into account. We 
treat the thermal expansion in terms of the dimensionless quantity, Gruneisen's gamma, 
YGr = aBTVj Cv in which a is the volume coefficient of thermal expansion, BT the iso
thermal bulk modulus, V the volume per mole, and Cv the molar heat capacity at constant 
volume. If the Mie- Gruneisen equation of state were obeyed, Gruneisen's gamma would 
be independent of temperature. The treatment will involve throughout a quasi-harmonic 
approximation, i.e. one in which the interaction between various normal modes of the 
crystal is assumed to be negligibly small, but that the normal mode frequencies Vj have a 
volume dependence Yi - - a(ln vj)ja(ln V) (Slater 1939). Straightforward statistical 
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mechanics then yields the expression 

3N 

2: CVj 

(I) 
aBTV -c;;- = YGr = 

} = 1 

in which CVj is the heat capacity of the jth normal mode of the crystal at the temperature 
of observation, and the sum is over all normal modes. Thus each individual mode Y is 
seen to be weighted by the heat capacity of that mode. It is the changes of these weighting 
factors with temperature along with differences of mode gammas whkh give rise to a 
temperature dependence of YGr. 

In the limit of temperatures high compared with hVmaxJk where Vmax is the highest fre
quency of the distribution , each mode has a heat capacity k and the expression for YGr 

reduces to 
2: Yj 

Yeo = 3N' 

the simple average of the Yj over all normal modes. If one had a knowledge of the fre
quency distribution of the 3N normal modes, and of the value of Yj associated with each, 
it would be possible to calculate the value of the YGr or of the thermal expansion at any 
temperature (within the small changes expected in BT and V as well as the fundamental 
limitations of a quasi-harmonic oscillator model). It would be possible in principle to do 
very careful neutron diffraction studies on samples at high pressures to measure the pressure 
dependence of the normal mode frequencies and thence the volume dependences. A 
complete set of these data would of course provide the crucial test of the model. In practice 
the difficulties associated with such a procedure seem formidable, especially for such 
materials as germanium and silicon which are relatively incompressible, e.g. a mode whose 
Yi had the large value 2 would exhibit a total change of less than 3 % in 10 kB for Ge, 2 % 
in Si, which would push present neutron diffraction techniques near their limit to see the 
change, even without the problems associated with the additional background scattering 
due to the thick walled pressure vessel. The implication is that the check on the limita
tions of the quasi-harmonic model used had best be made on one of the more compressible 
materials such as rubidium iodide which should exhibit interesting behaviour, or on the 
very compressible sodium. 

Since we do not know the numerical values of all the Yj, let us review the information 
which is available about the volume dependence of various normal mode frequencies. 
Consider the dispersion curve, frequency v plotted against wave vector k for waves pro
pagating in a particular direction in the reciprocal lattice. 

The curve may change as pressure is applied to the crystal, reducing its volume. The 
frequency of a normal mode j (defined as a wave having an intergral number of wave
lengths per unit distance fixed to the lattice, i.e. compressing with the lattice) changes for 
two reasons: (i) the value of k changes due to dimensional change of the lattice, (ii) the 
curve proper shifts due to changes in the interatomic interactions. Since the slope of the 
curve in the non-dispersive region is the velocity of sound waves of the appropriate polariza
tion - Yi = d(ln v)Jd(1n V) + d(ln k j)Jd(1n V) applies to modes in the non-dispersive 
region of the spectrum. 
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2. Gamma of an anisotropic continuum 

Recently measurements have been made (McSkimmin 1957, Chapman 1959) of the 
pressure dependence of all three independent elastic constants of germanium and silicon, 
making it possible to eliminate two of the assumptions of the Slater model, the assumption 
of elastic isotropy and that of independence of Poisson's ratio of volume. For each 
direction of propagation in the crystal an expression for the velocities of each of the three 
independent polarizations of sound waves will appear in the form v = (Cjp)1/.2, 'where 
C is an elastic stiffness, p is the crystal density. 

The gamma of each of these modes then appears in the form Y = - 1- d(ln C)/d(ln V) - t. 
The quantities d(ln C)/d(ln V) are related to the measured pressure derivatives of the 
elastic constants by the relation d(ln C)/d(ln V) = - (BT/C)(dC/dP) where BT is the iso
thermal bulk modulus. The high temperature limit of YGr on the anisotropic continuum 
model is an average of the y's of the longitudinal and two transverse modes over all direc
tions of propagation in the crystal. This averaging process has been carried out by Shea~d 
(1958) using a machine calculation for a number of crystals. The averaging may be 
performed approximately by using a process such as that of Houston (1948). Values 
obtained in Ge and Si using the Houston approximation and data on pressure dependence 
of elastic constants of Ge by McSkimmin (1957) and of Si by Chapman (1959) yield 
Yoo = 0 ' 72 in Ge, 0·51 in Si, comparing almost too well with the experimental values of 
YGr found by Gibbons, 0·73 in Ge, 0·45 in Si in the high temperature limit. Table I 
contains the individual values of Y for modes propagating along [100], [110] and [Ill] 
in Ge and Si. Note that the Slater gamma is much higher than the average gamma because 
of the excessive weight it gives to the longitudinal modes. 

Table 1. y's of long wavelength acoustic modes propagating along various 
crystallographic directions. 

Direction of 
propagation YL Cll' YTl Cn YTz CTZ 

[100] 1·37 (1,67) 0 ·33 (0 ' 80) 0 · 33 (0 ' 80) 
Si [110] 1· 33 (1 ,96) 0·33 (0 · 80) - 0·12 (0· 51) 

[111] 1· 32 (2'05) 0:08 (0 ' 61) 0·08 (0 ' 61) 

pNL2 pNIT2 pN2T2 

YL Cll' yn CTl Y T2 CZT 
[100] 1·29 (1·29) 0·584 (0 ' 67) 0·584 (0 ' 67) 

Ge [110] 1·28 (I. 56) 0 · 584 (0 · 67) 0·170 (0·40) 
[111] 1·27 (1. 65) 0·36 (0'49) 0·36 (0,49) 

To obtain the low temperature limit yo of YGr on this continuum model, one must weight 
the individual mode gammas by the inverse cube of the velocity of waves of that mode 
type, and again average over all directions of propagation. This is equivalent to deter
mining - d(ln eo)/d(ln V) where eo is the low temperature limit of the Debye tempera
ture. This may most easily be accomplished by using de Launay's (1960) tables of eo 
(Cu, C12, C44, p) together with the values of dCij /dP, with the results yo = 0·49 in Ge, 
O' 25 in Si (Daniels 1962). These points are plotted on the T = 0 ordinate of figures I 
and 2. Note the high degree of similarity then apparent between the behaviour of Ge 
and Si. It might seem then as if the continuum model fits quite well the behaviour of 
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Gruneisen's gamma in Ge and Si over the temperature range considered . However, note 
that the large values of mode gammas are associated with stiff modes and the small gammas 
(one negative in Si) are associated with soft modes. This combination would on a con
tinuum model lead to expectation of a monatonic increase of 'YOr from yo to 'Yoo as the 
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Figure 1. 'YOr plotted agaiost Tin Si, showing experimentally determined values and synthetic values. 
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Figure 2. 'YOr plotted against Tin Ge showing experimentally determined values and synthetic values. 

temperature is increased. In any case it is clear that no means of averaging a set of all 
positive mode gammas weighed by their positive heat capacities as in equation (1) will 
give a net negative gamma in some temperature range as is observed in Ge, or give a 
minimum value of YOr ~ - 0·5 in Si when the lowest mode I' ~ - O· 1. 
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It must be then that some of the modes in the dispersive region have important negative 
y's, since such negative values of Yi do not occur strongly enough in the non-dispersive 
region. We can conclude that the agreement of Yeo with the high temperature average on 
the continuum model is fortuitous . 

3. Gammas for dispersive modes 

There are to date no direct measurements of the Yi of modes in the dispersive region of 
the spectrum. As has been mentioned, experiments using slow neutron spectroscopy at 
high pressures would be ideally direct but difficult. One is forced to examine effects which 
will provide indirectly a measure of the volume dependences sought. 

Two possibly useful effects are the temperature shift of the fine structure in the absorption 
edge spectrum of Ge measured by MacFarlane et al. (1957), and the infra-red lattice 
absorption bands studied in Ge, Si and diamond by Collins and Fan (1953) if one assumes 
the temperature dependence of the frequency shifts to be due entirely to their volume 
dependence through the thermal expansion of the lattice. Quantitatively however the 
effect is too small to be useful. 

The work of Braunstein (private communication) on infra-red lattice absorption bands 
in Ge- Si alloys, however, is a more promising source of information. If one makes the 
assumption that the effect of dilute alloying is purely one of compression or expansion of 
the principal constituent, the following may be written : 

1 (dv) 1 ( dv ) (d(ln V») 
;- dx P,T =;- d(ln V) ~ P,T 

where x is the concentration of the alloying element, and dv/dx is the alloy shift of a parti
cular band. 

We have computed dx/d(ln V) from Johnson and Christian's (1954) data of lattice 
parameter plotted against composition of Ge- Si alloys, assuming the deviations from 
Vegard's law to occur between 0 and 10 % Si and 90 and 100 % Si. This leads to the 
following values of gamma from Braunstein's data: 

Ge Si 

YTA - 21 - 7·2 
YLALO + 8·1 + 1·7 
YTO + 9·4 + 2·7. 

The results confirm our belief that negative gammas occur in the TA dispersion peaks. 
The values seem unreasonably large in magnitude in Ge, but this may merely be due to 
the failure of the approximation. 

4. Fit of (YG<, T) curve 

Finally, we can attempt to use the expressions (1) together with the measured values 
of a and attempt to estimate the average gammas associated with the peaks of the spectrum 
corresponding to specific mode types. We have broken the Phillips (1958) spectrum up 
into two parabolic continuum contributions associated with transverse and longitudinal 
acoustic modes with small wave vector, and three delta functions associated with the TA, 
LA + LO and TO peaks of the actual distribution. Characteristics of these approximate. 

I 
I 

I 
I 
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spectra for Ge and Si are given in table 2 in terms of their characteristic temperatures. 
Numbers in parenthesis following the temperature give the fractions of 3N states associated 
with each spectral detail. The effective (eo, T) data computed from this spectrum agree 
very well with the data of Flubacher, Leadbetter and Morrison (1959), our computed 
values of eo lying higher than the experimental values in the temperature region below 
the minimum, as would be expected considering the gap our approximations introduce in 
the spectrum below the T A delta function. Thus the minimum of our curve is displaced 
to slightly higher temperatures in both Ge and Si. Note that although the small continuum 

Transverse continuum GD 
Longitudinal continuum Go 
TA GE 
LALO GE 
TO GE 

Table 2 

Ge 

72 (6'48 x 10- 3) 

288(4'95 x 10- 2) 

120 (0, 3267) 
327 (0·2838) 
396 (0' 3333) 

Si 

125 (6'48 x 10- 3) 

499(4'95 X 10- 2) 

217 (0, 3267) 
567 (0' 2838) 
687 (0·3333) 

regions included do not profoundly affect the shape of the (eo, T) curve except at very 
low temperatures (their removal in Ge raises eo (20 0K) from 262 to 276 OK), their effect 
must be included even to approximate the (Yo" T) curves of Gibbons in Si. 

Figures I and 2 show the curves of YOr in germanium and silicon as measured by Gibbons, 
and curves of YOr constructed from Novikova's thermal expansion measurements. The 
low temperature limits were calculated from data of the pressure dependence of the elastic 
constants. Two curves are fitted to measurements in each of Ge and Si. The values of 
the YJ associated with each element of spectral structure were found as follows. The YT 
and YL of the transverse and longitudinal continua were computed from the data on pressure 
dependence of the elastic constants of Ge and Si. The gammas associated with the LALO 
and TO peaks were taken to be equal since the data and method did not suggest sufficient 
precision to warrant an attempt to distinguish the two values independently. Thus the 
LALO, TO Y must not be considered as more than an approximate average over the two 
m::>de types. That average, and the average Y of the TA peaks, were found by fitting to 
t\\O points on the experimental (YOr' T) curve. Values of the gammas obtained are as 
follows: 

Ge curve I fitted to Novikova's curve at 40 0K and 1600K 

YT = 0·398 YL = 1·28 YTA = - 0 · 36 YLALOTO = 1 ·42 

Curve II fitted to Gibbons's curve at 40 0K and 2000K 

YT = 0·398 YL = 1·28 YTA = - 0·09 YLALOTO = 1·21 

Si curve I fitted to Gibbons's curve at 700K and 3000
K 

YT = O' 120 YL = 1 ·34 YT A = - O· 69 YLALOTO = 1·17 

Curve II fitted to Gibbons's curve at 400K and 3000
K 

YT = O· 120 YL = 1· 34 YTA = - 0 ·26 YLALOTO = O· 86 

5. Discussion of results 

It is clear that at best this type of analysis can yield only values of Y's averaged over all 
the modes lumped into a particular peak. Examination of table 1 indicates that in the 
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low frequency region the gammas of the transverse modes vary over wide limits. Pre
sumably the same behaviour should occur in the dispersive region hence the individual 
mode gammas probably have a wide spread of values. More precise measurements of 
the thermal expansion to remove the discrepancies between the data of Novikova and 
Gibbons are highly desirable to permit further mode anharmonicity analysis. 

6. Thermal conductivities of Ge and Si 

The diamond structure elements C, Ge and Si are often quoted as examples of the failure 
of a simple formula for thermal conductivity in the high temperature region which may 
be put in the form KT oc y - 2 ']'-1 where Y is taken to be YG., and T is the absolute tem
perature (Leibfried and Schlomann 1954). The relation above holds reasonably well for 
many materials, but fails very badly in C, Si, and Ge, i.e. the value of Y required to account 
for the thermal resistance is much higher than the Gruneisen gamma. Barron (1956) 
points out that this failure may be expected in part because of the nature of the averaging 
process leading to YG., i.e. modes with negative or positive gammas will make a positive 
contribution to the thermal resistance, but will cancel one another in the averaging process 
leading to YGr' On this basis a better average might be made over Yi 2• Performing this 
average over the y's found in curves I of figures 1 and 2 leads to 

(2)1/2 = 1· 17 in Ge 
Yi 1·05 in Si 

to be compared with the high temperature limiting value of Yo., Yeo = 0·74 in Ge, 0 ·45 in 
Si. Clearly these results are much closer to the thermal conductivity result Yk ~ 2 in 
both Ge and Si, agreeing within a factor of two, a particularly large improvement over 
the factor of 4 discrepancy with Yeo in Si. 

This result is unsatisfactory, however, when one considers that in germanium all gammas 
are positive for small I k I yet some modes in the dispersive region have negative gammas. 
Assuming the dispersion curves to be continuous this implies the existence of modes with 
vanishingly small values of Yf, i.e. modes having very little interaction with a longitudinal 
stress field. Further, these modes must be associated with a TA branch and will be 
populated at temperatures below 120o

K. Because of the weakness of their interaction 
with the longitudinal stress field , the scattering mechanism for these modes must be by 
interaction with other transverse modes. This casts a shadow on any attempt to relate 
the thermal resistance to thermal expansion or to 'mode gammas' in these materials. 

7. Measurements to be made 

The fairly recent discovery of phonon-assisted tunnelling in Ge and Si (Hall 1961) 
provides a means of directly determining frequencies of certain modes in the dispersive 
region of the spectrum. It is possible in principle at least to study the pressure shift of 
the phonon kinks on the I- V characteristics. Then the Y of the mode in question is found 
using the relation BT(I jE)(dEjdP) = y, in which E is the voltage at which the kink appeared , 
and BT is the isothermal bulk modulus. Unfortunately the experiments must be performed 
at liquid helium temperatures. Experiments combining very low temperatures with high 
pressures .--.5 kilobars are experimentally very difficult. We have been working on the 
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cryogenic equipment problems, and expected to have data at this time, but the usual 
difficulties have intervened. 

Examination of the data of Chynoweth, Logan and Thomas (1962) reveals that in Ge 
one has reasonable hope of determining the y's for all mode types with the k at the zone 
edge in the [Ill] direction. 

The situation in Si is not quite so clear, because the pressure shift of the characteristics 
will be due to both the pressure dependence of the phonon energies at constant k plus a 
shift due to the change in k of the conduction band minimum with pressure. This second 
contribution will probably not be critical in the case of the TA and TO modes which have 
little k dependence near the zone edge. 

With a knowledge of the volume dependences of the frequencies at a few symmetry 
points from these experiments, coupled with the measured volume dependences of the 
slopes of the dispersion curves at k = 0 from measurements of the pressure dependences 
of the elastic constants, one should be able to use Cochran's theory of the lattice vibrations 
in Ge to construct an entire set of dispersion curves at different volumes. The detailed 
knowledge of the anharmonicities, i.e. of the Yj, will enable one to reconstruct accurately 
the temperature dependence of YoP or of the thermal expansion coefficient independently 
of thermal measurements, as well as to provide material for the theory of thermal con
ductivity in these structures. 
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